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Astrophysical neutrinos are here;
see talk yesterday by Gary Hill.




lceCube-DeepCore
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Neutrino telescopes can efficiently measure atmospheric oscillations;
see talk Juan Pablo Yanez 25’ ago for the latest.




lceCube-DeepCore-PINGU
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lceCube-DeepCore-PINGU
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Add 40 strings (baseline target)
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The physics with future atmospheric neutrino detectors

Covered in today’s talk

e Gain sensitivity to atmospheric neutrinos in the region below 10 GeV
with very high statistics

o (PI\GIC\)/IVIi—?)le a definitive measurement of the neutrino mass hierarchy

e Will help pin down (Amzg)? and test maximal mixing, v+ appearance

Not discussed today

e Probe lower mass WIMPs

e (Gain increased sensitivity to supernovae neutrino bursts, Earth
tomography

® |nitiate an extensive calibration program to improve systematics
knowledge

see poster “New calibration methods for IceCube, DeepCore, and PINGU”
by Martin Jurkovic et al.

° (Pl\ﬁlltg];i\r)}der technological R&D for the Megaton Ice Cherenkov Array



Oscillations with Atmospheric Neutrinos

-® Neutrinos oscillating over one Earth diameter have a v, survival minimum at
~25 GeV

¢ Hierarchy-dependent matter
effects below ~12 GeV

e Neutrinos are available over
a wide range of energies and
baselines

e Comparison of observations
from different baselines and
energies is crucial for
controlling systematics

e Essentially, a generalization
of the up-down ratio approach




PINGU’s Atmospheric v Signal
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Using atmospheric neutrinos to measure the NMH

Up to 20% differences in v, survival probabilities for various energies and baselines,
depending on the neutrino mass hierarchy
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PINGU and the NMH

e Cannot distinguish v Normal Mass Hierarchy (True)
from v directly — rely
Instead on differences
IN fluxes, cross sections
(and kinematics)
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PINGU and the NMH

e Cannot distinguish v Inverted Mass Hierarchy (True)
from v directly — rely
Instead on differences
IN fluxes, cross sections
(and kinematics)
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PINGU and the NMH

e Once detector resolutions

following JHER, 2013(02):, pp. 1-39

are included the signature (Nyy—Nui) /N N
of the hierarchy is apparent | .
by looking at the pattern of | Preliminary “Zeaf ;ata). 0.24
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PINGU

Particle 1D
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see poster “Event reconstruction and particle identification for low
energy events in DeepCore and PINGU” by Tim Arlen et al.




PINGU and the NMH

arXiv:1401.2046
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e Distinctive (and quite different) hierarchy-dependent signatures are visible in
both the track and cascade channels

e [Full MC for detector efficiency, reconstruction, and particle |ID included


http://arxiv.org/abs/1306.5846
http://arxiv.org/abs/1306.5846

PINGU and the NMH - extracting the sensitivity

Likelihood Ratio Analysis
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e Estimations from the full simulation operating on event histograms in Energy and cos(zenith)

e Fast evaluation using the Fisher Information Matrix (FIM) where the gradients at each point
fully describe the parabolic minimum (invert and olbtain the full covariance matrix for the
experiment

e Full analysis from pseudo data sets applied as templates; LLR provides degree of
agreement between pseudo set and one hierarchy vs. the other.

e The Likelihood distributions are fit well by Gaussians; the two methods agree

see poster “Calculating PINGU'’s sensitivity to the neutrino
mass hierarchy” by Lukas Schulte et al.




PINGU and the NMH - applying the systematics
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e Strongest impact from the Energy Scale and cross-section normalization, dcp has
a minimal effect.

e Additional systematics currently being incorporated:

e Particle ID performance

e Cross-section details

¢ |ce Model

mass hierarchy” by Lukas Schulte et al.

see poster “Calculating PINGU'’s sensitivity to the neutrino




PINGU and the NMH - predicted sensitivity

¢ \Vith baseline geometry, a determination of the mass hierarchy with 30
significance appears possible with 3.5 years of data

e Primary estimate uses
parametric detector
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see poster “Calculating PINGU'’s sensitivity to the neutrino
mass hierarchy” by Lukas Schulte et al.
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PINGU and the NMH - predicted sensitivity

¢ \Vith baseline geometry, a determination of the mass hierarchy with 30
significance appears possible with 3.5 years of data
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see poster “Calculating PINGU'’s sensitivity to the neutrino
mass hierarchy” by Lukas Schulte et al.
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PINGU and the NMH - In broad context

e Several current or planned experiments will have sensitivity to the neutrino mass hierarchy in the
next 10-15 years

¢ NB: median outcomes shown — large fluctuations possible
after Blennow et al., arXiv:1311.1822

¢ \\Vidths indicate main uncertainty / LBNE :
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parameters (1st octant)
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PINGU and the NMH - comparison to ORCA

e ORCA uses a similar design philosophy to PINGU of PINGU DOM
e Assumed is the first octant with fits to the oscillation parameters '
¢ |[ncluded is some misidentification of rate based on MC

e Not yet included are overall flux and interaction uncertainty, NC events

figure see talk yesterday Maarten de Jong; for details
see poster Antoine Kouchner
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PINGU and the NMH - comparison to O

e ORCA uses a similar design philosophy to PINGU

RCA

e Assumed is the first octant with fits to the oscillation parameters

¢ |ncluded is some misidentification of rate based on MC

e Not yet included are overall flux and interaction uncertainty, NC events

~3X the photocathode
of PINGU DOM

¢ The individual track and cascade channels are similar; things are roughly
consistent between the independent detector designs and analyses.

figure see talk yesterday Maarten de Jong; for details
see poster Antoine Kouchner
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PINGU and non-NMH atmospheric measurements-
Vr appearance

e Provides a test of the unitarity of the mixing matrix

e Selection of events currently uses same criteria as for the NMH analysis with the goal now
to reject atmospheric muons. Improvements are under development.

e Same trained BDT as the NMH analysis for selecting “pure” cascade-like events
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e 50 exclusion of no vr appearance expected after 1 month of data; 10% precision in the v+
normalization after 6 months.

see poster “Sensitivity to v appearance with DeepCore and PINGU” by
Joao Pedro Athayde Marcondes de Andre




Sensitivity to B23

e Expected error on B23 after 3 years of running the proposed ORCA detector can be
reduced to 6.6 mrad (around a factor of 4 improvement over current sensitivity)

_ 12 I ndf 1.608e+04 / 97
see poster Antoine Kouchner
Constant 3.291e+04 = 1.367e+02
- Mean  3.455e-05 + 1.791e-05
35000~ KM3NeT/ORCA Sigma 0.006613 = 0.000021
30000 - PRELIMINARY
25000 —
20000 [—
15000 |—
10000 [—
5000 —
:l 1 1 l 1 1 1 I 1 l 1 1 1 1 I 1 1 1 1 l 1 1 1 1
-%.2 -0.15 0.05 0.1 0.15 0.2

fit 8,, -true 6,, [rad]

tails from fit to the wrong octant




Summary and Outlook

¢ |ceCube and DeepCore paved the way:
demonstration of a prolific low-energy neutrino
physics in the Antarctic ice with leading sensitivity in
the indirect dark matter search and a robust
atmospheric neutrino oscillation programs of
lceCube.

e PINGU is being optimized

e String and optical module placement has a fairly
broad minimum for the NMH sensitivity.

e Additional detectors (increasing from 60 to 96
modules per string) improves the resolution at low
energies, significantly moving the 3 year
significance from 2.80 to nearly 3.30 for a 10%
increase in project cost.

e Beyond a rich program in atmospheric neutrino
measurements, PINGU will increase the sensitivity to
the low-mass indirect WIMP searches, supernova
neutrinos, Earth tomography...
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Summary and Outlook

¢ PINGU advantages include:

e Use of the similar hardware and deployment techniques as IlceCube would significantly
reduce project risk

e Could be quick, dependent on funding (2 years of procurement and fabrication; 2-3
years of deployment)

e |s a natural part of a Next Generation IceCube Observatory (high energy extension,

surface veto array). P5 final draft report “...and we encourage continued work to understand

systematics. PINGU could play a very important role as part of a larger upgrade of lceCube, or as a separate upgrade,
but more work is required.”

e NSF MREFC, and international partner proposals are now in preparation (still early days;
interested”? come visit us)

e PINGU as a potential stepping stone: acting as a testbed for new photodetectors could lead
to a multi-megaton fiducial detector (MICA) reaching a O(10 - 100 MeV) in the ice
(supernova neutrinos, very low-mass WIMP searches, (potentially) proton decay).
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PINGU event reconstruction

e Matter effects alter oscillation probabilities

for neutrinos or antineutrinos traversing
the Earth

e \Maximum effects seen for specific
energies and baselines (= zenith
angles) due to the Earth’s density
profile

e Neutrino oscillation probabilities
affected If hierarchy is normal,
antineutrinos If inverted

e Rates of all flavors are affected

see poster “Event reconstruction and particle identification for low energy
events in DeepCore and PINGU” by Tim Arlen et al.

cos(8;) Resolutions

0.5 1 !
- - PINGU v,
e+ e+ PINGU v,
0.4 e --------------- ---------------- ---------------- ---------- -+ DeepCore v, H
| | | | e e+ DeepCore v,

0.0

0 5 10 15 20 25 30 35
Energy [GeV]

1 | _energy Resolgtions |

= PINGU 1, : : '

e e+ PINGU v,

ol [+ PNGU Preliminary.. ...

—o—

- - DeepCore v,

e+ e+ DeepCore v, ; : e =

o (Ereco_Etrue)
o

0 5 10 15 20 25 30 35
Energy [GeV]



PINGU cross-section systematics under study
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PINGU’s energy region of interest is dominated by DIS with small contributions
from QES and RES production



Generating fast MC sets for the PINGU FIM analysis

PINGU ve/v, /v, MC datasets
with MultiNest reconstruction

Honda atm.
flux tables

RIS W

Reconstruchon

Effectlve Areas Partlcle D
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| * | * | *
/ [ [ [
AtmoWeights/ TRUTH RECO ANALYSIS
NuCraft histograms histograms = histograms
oscillation Ve/ Vv, /v:/NC i Ve/ v, /v./NC is tracks/cascades
probabilities _ _ _

see poster “Calculating PINGU'’s sensitivity to the neutrino
mass hierarchy” by Lukas Schulte et al.




The reference detector

1 ORCA detector:

150 strings 20m spaced
20 DOM /string spaced 6m

Instrumented volume:

) I1x702x 114 =175 Mt

Multi-PMT DOM

31 small PMTs

Almost uniform coverage
Photon counting
Direction of photon

All electronics inside

see poster Antoine Kouchner
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ORCA - Performance

Reference detector - Fiducial volume
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ORCA - Performance in the muon channel

Reference detector - vertex reconstruction
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RCA - Performance in the muon channel

Reference detector - angular resolution
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Direction Resolution (premium events)

5 40¢
0 —
S, - KM3NeT/ORCA PRELIMINARY
5 85(
= C m Median
o 30__ .
o - —— 16% & 84% Quantiles
k3 -
o 25—
= I
< C
20—
| n
15— T
- [ ]
L [ ]
— | !
10 14l
5
1_— 1 1 1 1 I | | 1 1 I | 1 1 1 [ L 1 1 1 | Il 1 1 1 I 1 L | |
0 10 30

Neutrlno Energy [GeV]

Cascade Channel - Azimuthal Angle

Delta Zenith Resolution (premium events)

B 2L
[F]
E —
o 20— ®  Median
< L —— 16% & 84% Quantiles
15—
10— [ ]
i '
B | |
— ' [ BN |
5— L IR I
: L Y 'L . ' I |
|— | | | | | | | | 1 | | | | | | | 1 | | 1 | | | | | | 1 1
0 5 10 15 20 25 30

Neutrino Energy [GeV]

Cascade Channel - Zenith Angle



ORCA - Performance in the muon channel

Reference detector - Energy resolution
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e Muon channel currently uses only the length of
the muon as the energy estimator. Expect
Improvements using hits from the initial
hadronic cascade.
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ORCA - NMH sensitivity

ORCA’s mass hierarchy significance is assessed by means of
a likelihood ratio test. Pseudo-experiments are generated
using random oscillation parameter values. They are then
fitted assuming NH and assuming IH to obtain the log
likelihood-ratio.

First octant is assumed
Includes fit of (9, 6,;, Am?)

The following plot is for rejection of NH (IH rejection is
slightly higher)

Includes some misidentification rate based on MC studies

Does not include yet:

— Overall flux uncertainty

— NC events

— Altered resolution for misidentified events

see poster Antoine Kouchner




ORCA - sensitivity 623

e Expected error on B23 after 3 years of running the proposed ORCA detector can be
reduced to 6.6 mrad (currently around 28 mrad)

s 2500
:g 14— KM3NeT/ORCA PRELIMINARY = '
E 1-2:_ 'l_ —2000
[y 1500
0.8
- 1000
0.6:—
- . 500
0.4:-_— -
032 04 "5 o8 T4 0

true 6, [rad]

see poster Antoine Kouchner




